AI Agent Development with LLM (Build you first agentic AI): Level 1

ā§ŗ 7500 ā§ŗ 4875
Available Seat : 41
Duration : 24 classes
Course Thumbnail

Course Description

āĻāχ āϕ⧋āĻ°ā§āϏ⧇ āφāĻĒāύāĻŋ āĻļāĻŋāĻ–āĻŦ⧇āύ āϕ⧀āĻ­āĻžāĻŦ⧇ Large Language Model (LLM) āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰ⧇ āφāϧ⧁āύāĻŋāĻ• AI Agent āϤ⧈āϰāĻŋ āĻ•āϰāĻž āϝāĻžā§Ÿ — āϝ⧇āϗ⧁āϞ⧋ āĻļ⧁āϧ⧁ āωāĻ¤ā§āϤāϰ āĻĻā§‡ā§Ÿ āύāĻž, āĻŦāϰāĻ‚ āύāĻŋāĻœā§‡āϰ āĻŽāϤ⧋ āĻ•āϰ⧇ āĻ•āĻžāϜ plan āĻ•āϰ⧇, āϤāĻĨā§āϝ āϖ⧁āρāĻœā§‡ āφāύ⧇, āĻĄāϕ⧁āĻŽā§‡āĻ¨ā§āϟ āĻĒā§œā§‡, decision āĻ¨ā§‡ā§Ÿ āĻāĻŦāĻ‚ āĻŦāĻžāĻ¸ā§āϤāĻŦ āϟāĻžāĻ¸ā§āĻ• āĻ…āĻŸā§‹āĻŽā§‡āĻļāύ āĻ•āϰāϤ⧇ āĻĒāĻžāϰ⧇āĨ¤

āĻĒ⧁āϰ⧋ āϕ⧋āĻ°ā§āϏ⧇ āφāĻŽāϰāĻž āϧāĻžāĻĒ⧇ āϧāĻžāĻĒ⧇ āĻļāĻŋāĻ–āĻŦ — LLM basics, prompt engineering, tool calling, memory, RAG (Retrieval Augmented Generation), multi-agent workflow āĻāĻŦāĻ‚ practical integrationāĨ¤ āĻĒā§āϰāϤāĻŋāϟāĻŋ āĻŽāĻĄāĻŋāωāϞ⧇ āĻĨāĻžāĻ•āĻŦ⧇ hands-on practice āĻāĻŦāĻ‚ āϛ⧋āϟ āĻĒā§āϰ⧋āĻœā§‡āĻ•ā§āϟ, āϝāĻžāϤ⧇ āφāĻĒāύāĻŋ āĻŦāĻžāĻ¸ā§āϤāĻŦ⧇ āĻŦā§āϝāĻŦāĻšāĻžāϰāϝ⧋āĻ—ā§āϝ āϏāĻ˛ā§āϝ⧁āĻļāύ āϤ⧈āϰāĻŋ āĻ•āϰāϤ⧇ āĻĒāĻžāϰ⧇āύāĨ¤

āϕ⧋āĻ°ā§āϏ āĻļ⧇āώ⧇ āφāĻĒāύāĻŋ āύāĻŋāĻœā§‡āχ āĻāĻŽāύ AI Agent āĻŦāĻžāύāĻžāϤ⧇ āĻĒāĻžāϰāĻŦ⧇āύ — āϝāĻž customer support, knowledge base, WhatsApp/website chatbot, data analysis, research assistant āĻ…āĻĨāĻŦāĻž business automation-āĻ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰāĻž āϝāĻžāĻŦ⧇āĨ¤

āĻ•ā§āϞāĻžāϏ āύāĻŋāĻŦ⧇āύāσ Abdullah Al Noman Abdullah Al Noman

  • Environment Setup
  • Data Type
  • Variable & Constants
  • Data Types
  • Type Conversion
  • Input/Output Operations
  • Operators
  • Conditional Statements (if-else)
  • Loops (for. while)
  • Functions
  • Lambda Functions
  • List Comprehension
  • String Manipulation
  • List
  • Tuple
  • Dictionary
  • Set
  • Exception Handling
  • File Handling
  • Module & Package
  • Virtual Environment
  • pip & Dependency Management
āĻ•ā§āϞāĻžāϏ āύāĻŋāĻŦ⧇āύāσ Salman Md Sultan Salman Md Sultan

  • Extraction Techniques from various Sources
  • Transformation Techniques from Various Sources
  • SQL (How to Deal with SQL Source)
  • Feature Engineering
  • Loading techniques into various destination
  • Task Scheduler in ETL Automation
  • Build a ETL Automation Workflow using Airflow
  • Build a projects

  • Lowercasing
  • Removing Punctuation
  • Tokenization
  • Stopwords Removal
  • Stemming
  • Lemmatization
  • Removing Numbers
  • Removing Extra Whitespace

  • Bag of Words (BoW)
  • TF-IDF
  • CountVectorizer
  • Word Embeddings (After Deep Learning)
  • Sentence Embeddings (After Deep Learning)

  • Artificial Neural Network
  • Deep Neural Network
  • Convolutional Neural Network
  • RNN
  • LSTM
  • GRU
  • 2 Projects

  • Transformer
  • Attention with Self Attention
  • Positional Encoding & Layer Normalization

  • AI Agent vs Normal Chatbot — āĻĒāĻžāĻ°ā§āĻĨāĻ•ā§āϝ
  • LLM āϕ⧀? — tokens - context window - embeddings (concept)
  • Prompt Engineering Basics
  • System / Instruction / Persona prompt design
  • ReAct / Chain-of-Thought — āϧāĻžāϰāĻŖāĻž
  • Hallucination — āϕ⧇āύ āĻšā§Ÿ & āĻ•āĻŋāĻ­āĻžāĻŦ⧇ āĻ•āĻŽāĻžāχ
  • Case Study: ChatGPT style agent āϕ⧀āĻ­āĻžāĻŦ⧇ āĻ•āĻžāϜ āĻ•āϰ⧇

  • API basics — REST - keys - rate limits
  • OpenAI/Gemini/Claude API overview
  • Function Calling/Tool Usage
  • Error handling & fallback
  • Logging & debugging
  • langchain
  • pydantic

  • Conversation memory concepts
  • Short-term vs Long-term memory
  • Vector DB intro
  • Embeddings concept
  • RAG basics
  • Knowledge-base agent build
  • Hallucination reduce with RAG

  • Multi-step reasoning
  • Task decomposition(planner–executor)
  • ReAct+Tool use
  • Multi-agent communication
  • State management
  • Failure recovery
  • Research assistant agent

  • What is MCP(Model Context Protocol)
  • Why MCP for Agents
  • mcp server install & setup
  • mcp.json config
  • Connect agent with MCP
  • File/Web/DB server examples
  • Tool discovery & execution
  • Debugging & best practices
  • Agent demo with MCP

  • Customer support agent
  • Document Q&A agent
  • Code assistant
  • WhatsApp/Telegram/Web chatbot
  • Lead generation agent
  • Data analysis agent
  • Deployment options

  • Safety & guardrails
  • Prompt injection defense
  • Cost optimization
  • Latency & caching
  • Hybrid/offline embeddings
  • Evaluation metrics

Salman Md Sultan

Education

  • M.Sc. in Information and Communication Engineering, Chosun University, Gwangju, South Korea. CGPA: 4.25 out of 4.50, passing year: 2021., CGPA: 4.25 out of 4.50,
  • B.Sc. in Computer Science and Engineering, University of Asia Pacific, Dhaka, Bangladesh. CGPA: 3.75 out of 4.00, passing year: 2017., CGPA: 3.75 out of 4.00,
  • Higher Secondary Certificate (HSC): Science, Government Laboratory High School, Dhaka. GPA: 4.40 out of 5, passing year: 2013., GPA: 4.40 out of 5,
  • Secondary School Certificate (SSC): Science, Government Laboratory High School, Dhaka. GPA: 4.69 out of 5, passing year: 2011., GPA: 4.69 out of 5,

IT Industrial Experience (6 Years)

No. Institution Designation Duration
1 Innovative Skills Ltd. Chief Executive Officer (CEO) 2023-Continue
2 Gachon University External AI Researcher 01/05/2023-Continue
3 European IT Team Leader (R&D) 01/02/22-30/04/2023
4 TISCON Python Developer 01/10/21-31/01/22
5 Chosun University AI Research Programmer 03/09/19-31/08/21
6 Robi Axiata Limited Report Analyst 10/04/18-30/09/18

Project/Research

  • 2022-2023: Development of Collective Collaboration Intelligence Framework for Internet of Autonomous Things, South Korea. [RSSI, Localization, Data Analysis, Supervised Learning]
  • 2023 [Running]: Geobag Counting using Deep Learning. [Yolov3, Django, MySQL, Bootstrap], jQuery]
  • 2022-2023: Employee Attendance System using Computer Vision [OpenCV, Yolov3, Django, Firebase]
  • 2021-2022: Intelligent platform for Indoor Spatial Data Infrastructure Based on Crowd-sourcing Behavior, South Korea. [RSSI, Localization, Data Analysis, Supervised Learning]
  • 2020-2022: Smart city urban infrastructure air quality real-time monitoring and prediction platform technology development, South Korea. [Tensorflow, Deep Reinforcement Learning, LSTM, Drone Navigation, AQI Data Analysis]
  • 2021: Employee Attendance System using Computer Vision [Dlib, Face_recognition API]
  • 2021: Exam Proctoring System using Computer Vision [Dlib, Face_recognition, Yolov3]
  • 2019-2021: Development of Autonomous Collaborative Swarm Intelligence Technologies, South Korea. [Tensorflow, Google Dev. Board, Deep Reinforcement Learning, LSTM, Dense, IoT]

Evaluation

Image

Reviews through our website

Reviews through Social Media

Tasfiq Kamran

Aminul Mahi

Shaiful Islam

MD Asadullah Shibli

Obaydullah Hasib

Nirban Mitra Joy

Md Maniruzzaman Manir

Md Anower Hossain

Mehedi Azad

Alomghir Hossain

Video Feedback

Student - 1
Student - 2
Student - 3
Student - 4
Student - 5

Key Topics:

Python Fundamentals Extraction, Transformation Loading Processing in NLP Text Preprocessing in NLP Vectorization Technique in NLP Deep Learning models - Theory + Implementation Generative AI Foundation- Theory + Implementation AI Agent vs Traditional Chatbot LLM Basics & Agent Mindset Prompt Engineering Fundamentals System / Role / Instruction Prompts ReAct & Chain-of-Thought Concepts Tool calling & Function Calling API Integration for Agents Memory: Short-term & Long-term Embeddings & Vector Database Basics Retrieval Augmented Generation (RAG) Multi-Step & Multi-Agent Workflow Error Handling & Guardrails Cost & Latency Optimization Safety: Prompt Injection & Jailbreak Protection Real-world AI Agent Use Cases & Projects

Prerequisite

Python Programming Knowledge of Deep Learning

Price

7500

Discount Price

4875

Duration

24 classes

Available Seats

41

Class Type

Live

Access

Lifetime

Remaining

3 days

Student Job Success

Mostafizur Rahman Limon
Frontend Developer

Mostafizur Rahman Limon

Jannatul Ferdous Maisha
UX/UI designer

Jannatul Ferdous Maisha

K M Zawad BIn Rahman
Sales Analyst

K M Zawad BIn Rahman

Mirza Shakil
Entrepreneur

Mirza Shakil

Abdul Majid
Software Developer

Abdul Majid

Mostakim Alvi
AI Engineer

Mostakim Alvi

Reviews

Shaiful Islam
Shaiful Islam
(5.0) 1 year ago

Embarking on a 4IR journey? Choose Innovative Skills. From Computer Vision, and NLP to other cutting-edge courses, their hands-on approach and expert... see more

Obaydullah Hasib
Obaydullah Hasib
(5.0) 1 year ago

Enrolling in the "Python Development with Django" course at ISBD has been a transformative experience. Salman Vai, our instructor, is so supportive, h... see more

Tasfiq Kamran
Tasfiq Kamran
(5.0) 1 year ago

A very friendly teaching platform with up to date topics and industry experts. Learning here is a great experience.

Rahmatullah Masum
Rahmatullah Masum
(5.0) 1 year ago

Assalamu Alaikum. 'Machine Learning for NLP' and other courses offered by Innovative Skills BD are well organized and the instructors are very helpf... see more

FAQs

Still having a doubt? Let’s be clearer!

āϕ⧋āĻ°ā§āϏ āĻļ⧇āώ⧇ āφāĻŽāϰāĻž āĻ•ā§āϝāĻžāϰāĻŋ⧟āĻžāϰ āĻ—āĻžāχāĻĄāϞāĻžāχāύ, āϏāĻŋāĻ­āĻŋ–āĻĒā§‹āĻ°ā§āϟāĻĢā§‹āϞāĻŋāĻ“ āĻŦāĻžāύāĻžāϤ⧇ āϏāĻšāĻžā§ŸāϤāĻž, āĻŽāĻ• āχāĻ¨ā§āϟāĻžāϰāĻ­āĻŋāω āĻāĻŦāĻ‚ āϏāĻŋāĻ­āĻŋ āϰ⧇āĻĢāĻžāϰāϏāĻš āĻĒā§āĻ°ā§Ÿā§‹āϜāĻ¨ā§€ā§Ÿ āϜāĻŦ āĻĒā§āϞ⧇āϏāĻŽā§‡āĻ¨ā§āϟ āϏāĻžāĻĒā§‹āĻ°ā§āϟ āĻĒā§āϰāĻĻāĻžāύ āĻ•āϰāĻŋ, āϝāĻžāϤ⧇ āφāĻĒāύāĻŋ āφāĻ¤ā§āĻŽāĻŦāĻŋāĻļā§āĻŦāĻžāϏ⧇āϰ āϏāĻžāĻĨ⧇ āĻ•ā§āϝāĻžāϰāĻŋ⧟āĻžāϰ āĻļ⧁āϰ⧁ āĻ•āϰāϤ⧇ āĻĒāĻžāϰ⧇āύāĨ¤ āĻāĻ›āĻžā§œāĻžāĻ“ āφāĻŽāϰāĻž āĻĒā§āϰāĻŋ āχāĻ¨ā§āĻĄāĻžāĻ¸ā§āĻŸā§āϰāĻŋ āĻĒā§āϰ⧋āĻ—ā§āϰāĻžāĻŽ āĻ•āϰāĻŋ āϝ⧇āĻ–āĻžāύ⧇ āĻāĻ•āϜāύ āĻļāĻŋāĻ•ā§āώāĻžāĻ°ā§āĻĨā§€ āϏāĻĒā§āϤāĻžāĻšā§‡ ā§Ēā§Ļ āϘāĻ¨ā§āϟāĻž āφāĻŽāĻžāĻĻ⧇āϰ āĻŸā§‡āĻ• āϟāĻŋāĻŽ āĻāϰ āϏāĻžāĻĨ⧇ āĻĨ⧇āϕ⧇ āχāĻ¨ā§āĻĄāĻžāĻ¸ā§āĻŸā§āϰāĻŋ āĻāϰ āϜāĻ¨ā§āϝ āĻĒā§āϰāĻ¸ā§āϤ⧁āϤ āĻ•āϰ⧇ āϤ⧋āϞ⧇āύāĨ¤

āĻœā§€ āφāĻŽāϰāĻž āϰāĻŋāϏāĻžāĻ°ā§āϚ āϏāĻžāĻĒā§‹āĻ°ā§āϟ āĻĻāĻŋā§Ÿā§‡ āĻĨāĻžāĻ•āĻŋāĨ¤ āĻļāĻŋāĻ•ā§āώāĻžāĻ°ā§āĻĨā§€āϰāĻž āφāĻŽāĻžāĻĻ⧇āϰ āϏāĻžāĻĨ⧇ āĻĨ⧇āϕ⧇ āϤāĻžāĻĻ⧇āϰ āϰāĻŋāϏāĻžāĻ°ā§āϚ āĻ“ā§ŸāĻžāĻ°ā§āĻ• āϏāĻŽā§āĻĒāĻ¨ā§āύ āĻ•āϰ⧇āύāĨ¤ āχāϤāĻŋāĻŽāĻ§ā§āϝ⧇ āφāĻŽāĻžāĻĻ⧇āϰ āĻ…āύ⧇āĻ• āĻ¸ā§āϟ⧁āĻĄā§‡āĻ¨ā§āϟ āϰāĻŋāϏāĻžāĻ°ā§āϚ āĻĒ⧇āĻĒāĻžāϰ āĻĒāĻžāĻŦāϞāĻŋāĻļ āĻ•āϰ⧇āϛ⧇āύāĨ¤

āϕ⧋āĻ°ā§āϏ āĻ āĻ­āĻ°ā§āϤāĻŋāϰ āĻļ⧁āϰ⧁āϰ āĻĻāĻŋāύ āĻĨ⧇āϕ⧇āχ āφāĻŽāĻžāĻĻ⧇āϰ āϏāĻžāĻĒā§‹āĻ°ā§āϟ āĻĒā§āϝāĻžāύ⧇āϞ āĻ…ā§āϝāĻžāĻ•ā§āϟāĻŋāĻ­ āĻĨāĻžāϕ⧇āύāĨ¤ āϤāĻžāϰāĻž āϏāĻŦāϏāĻŽā§Ÿ āĻļāĻŋāĻ•ā§āώāĻžāĻ°ā§āĻĨā§€āĻĻ⧇āϰ āϏāĻžāĻĨ⧇ āĻŦāϏ⧇ āϤāĻžāĻĻ⧇āϰ āĻĒā§āϰāĻŦā§āϞ⧇āĻŽ āϏāĻ˛ā§āĻ­ āĻ•āϰ⧇ āĻĻ⧇āύāĨ¤

āĻœā§€, āφāĻĒāύāĻŋ āϕ⧋āĻ°ā§āϏ āϏāĻ āĻŋāĻ•āĻŽāϤ⧋ āφāĻŽāĻžāĻĻ⧇āϰ āĻ—āĻžāχāĻĄāϞāĻžāχāύ āĻ…āύ⧁āϝāĻžā§Ÿā§€ āĻļ⧇āώ āĻ•āϰāϤ⧇ āĻĒāĻžāϰāϞ⧇ āφāĻĒāύāĻŋ āύāĻŋāĻœā§‡āϕ⧇ āĻāĻ•āϜāύ āϏāĻĢāϟāĻ“ā§Ÿā§āϝāĻžāϰ āĻĄā§‡āϭ⧇āϞāĻĒāĻžāϰ/āĻŽā§‡āĻļāĻŋāύ āϞāĻžāĻ°ā§āύāĻŋāĻ‚ āχāĻžā§āϜāĻŋāύāĻŋ⧟āĻžāϰ/āĻĄāĻžāϟāĻž āĻ…ā§āϝāĻžāύāĻžāϞāĻŋāĻ¸ā§āϟ āĻšāĻŋāϏ⧇āĻŦ⧇ āĻĻāĻžāĻŦāĻŋ āĻ•āϰāϤ⧇ āĻĒāĻžāϰāĻŦ⧇āύ

āĻœā§€, āĻĒā§āϰāĻ¤ā§āϝ⧇āĻ•āϟāĻž āϞāĻžāχāĻ­ āĻ•ā§āϞāĻžāϏ⧇āϰ āϰ⧇āĻ•āĻ°ā§āĻĄāĻŋāĻ‚ āφāĻŽāĻžāĻĻ⧇āϰ āĻ“ā§Ÿā§‡āĻŦāϏāĻžāχāĻŸā§‡ āφāĻĒāύāĻžāϰ āύāĻŋāϜāĻ¸ā§āĻŦ āĻĒā§‹āĻ°ā§āϟāĻžāϞ⧇ āĻĒā§‡ā§Ÿā§‡ āϝāĻžāĻŦ⧇āύāĨ¤ āĻāĻŦāĻ‚ āĻāϟāĻŋ āϞāĻžāχāĻĢāϟāĻžāχāĻŽ āĻāĻ•ā§āϏ⧇āϏ āĻĨāĻžāĻ•āĻŦ⧇āĨ¤

āĻœā§€, āϕ⧋āĻ°ā§āϏ āϏāĻĢāϞāĻ­āĻžāĻŦ⧇ āϏāĻŽā§āĻĒāĻ¨ā§āύ āĻ•āϰāĻžāϰ āĻĒāϰ āϏāĻžāĻ°ā§āϟāĻŋāĻĢāĻŋāϕ⧇āϟ āĻĒā§āϰāĻĻāĻžāύ āĻ•āϰāĻž āĻšā§ŸāĨ¤

Other Courses